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ABSTRACT

Convolutional sparse representations differ from the standard form
in representing the signal to be decomposed as the sum of a set of
convolutions with dictionary filters instead of a linear combination
of dictionary vectors. The advantage of the convolutional form is
that it provides a single-valued representation optimised over an en-
tire signal. The substantial computational cost of the convolutional
sparse coding and dictionary learning problems has recently been
shown to be greatly reduced by solving in the frequency domain, but
the periodic boundary conditions imposed by this approach have the
potential to create boundary artifacts. The present paper compares
different approaches to avoiding these effects in both sparse coding
and dictionary learning.

Index Terms— Convolutional Sparse Coding, Convolutional
Dictionary Learning, Boundary Effects

1. INTRODUCTION

Of the variety of formulations of the sparse coding problem [1, 2],
the present paper considers the specific form of Basis Pursuit De-
Noising (BPDN) [3]

argmin
x

1

2
‖Dx− s‖22 + λ ‖x‖1 . (1)

A convolutional sparse representation [4] replaces the representation
as a linear combination of dictionary matrix columns with a sum of a
set of convolutions with dictionary filters. The convolutional variant
of BPDN, which will be referred to here as Convolutional BPDN
(CBPDN) is defined as

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1 , (2)

where {dm} is a set of M dictionary filters, ∗ denotes convolution,
and {xm} is a set of coefficient maps1.

Problem (2) can be very computationally expensive whenN and
M are not small. The authors of [4] observed that a frequency do-
main solution was possible, but claimed that a spatial domain ap-
proach was to be preferred due to the possibility of boundary artifacts
arising from the periodic boundary conditions inherent in the use of
the Discrete Fourier Transform (DFT). However, a number of au-
thors have recently proposed much more efficient algorithms based
on the Alternating Direction Method of Multipliers (ADMM) [5]
framework, solving the most computationally expensive of the re-
sulting sub-problems in the DFT domain [6, 7, 8, 9]. Bristow et
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1For notational simplicity s and each of the {xm} are considered to be
N dimensional vectors, where N is the number of pixels in an image.

al. [6] provided some experimental evidence that the practical im-
pact of boundary artifacts on dictionary learning is negligible, but
Heide et al. [9] have suggested that this is not always the case, and
proposed a new approach designed to avoid boundary effects. The
present paper compares the boundary handling approach of Heide et
al. [9] with alternatives, including an existing method that has, thus
far, only been very briefly described in the literature [10, Sec. 4].

2. ADMM ALGORITHM FOR CBPDN

We start by describing the common form of the ADMM algorithms
with periodic boundary conditions [6, 7, 8]. First, defineDm is a lin-
ear operator such thatDmxm = dm∗xm, and define block matrices
and vectors

D =
(
D0 D1 . . .

)
x =

 x0

x1

...

 , (3)

so that (2) can be written in the same form as (1). The simplest
variable splitting into the ADMM standard form is

argmin
x,y

1

2

∥∥Dx− s
∥∥2
2
+λ ‖y‖1 s.t. x−y=0 , (4)

for which the corresponding ADMM iterations are

x(j+1) = argmin
x

1

2

∥∥Dx− s
∥∥2
2
+
ρ

2

∥∥∥x− y(j) + u(j)
∥∥∥2
2

(5)

y(j+1) = argmin
y

λ ‖y‖1 +
ρ

2

∥∥∥x(j+1) − y + u(j)
∥∥∥2
2

(6)

u(j+1) = u(j) + x(j+1) − y(j+1) . (7)

The solution to (6) is given by

y(j+1)
m = Sλ/ρ

(
x(j+1)
m + u(j)

m

)
, (8)

where
Sγ(u) = sign(u)�max(0, |u| − γ) (9)

is the well-known shrinkage/soft thresholding operation. The only
computationally expensive step is (5), which the DFT convolution
theorem implies is equivalent to the DFT domain problem

argmin
x̂

1

2

∥∥D̂x̂− ŝ
∥∥2
2
+
ρ

2
‖x̂− (ŷ − û)‖22 , (10)

where D̂ =
(
D̂0 D̂1 . . .

)
and

x̂ =

 x̂0

x̂1

...

 ŷ =

 ŷ0

ŷ1

...

 û =

 û0

û1

...

 , (11)



with ẑ denoting the DFT of variable z. The solution for (10) is given
by the linear system

(D̂HD̂ + ρI)x̂ = D̂H ŝ+ ρ (ŷ − û) , (12)

which can be solved very efficiently by exploiting the Sherman-
Morrison formula [7, 8].

3. BOUNDARY HANDLING

The approach outlined in the previous section applies convolution in
the DFT domain, implictly imposing periodic boundary conditions,
which can be expected to result in boundary artifacts when repre-
senting signals that are not circularly symmetric.

3.1. Boundary Overlap Suppression

The primary concern associated with the use of periodic boundary
conditions in a convolutional sparse representation is that the repre-
sentation can include filters that straddle the signal boundary. Since
the discontinuties in these regions will not, in general, conform to
the signal model for which the dictionary was learned, the represen-
tation can be expected to be locally inferior.

A simple solution is to modify (2) to include the constraint that
Bxm = 0 ∀m, where B is an operator projecting each xm to the
subset of elements in that map that corresponds to filters with support
extending across the image boundary. The indicator function2 can be
used to rewrite the constrained problem in unconstrained form

argmin
{xm}

1

2

∥∥∥∥∥∑
m

dm ∗ xm − s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 +
∑
m

ιC(xm) , (13)

with C = {x ∈ RN : Bx = 0}. Since the proximal map of the sum
of the `1 and indicator function terms can be computed in closed
form, it is not necessary to introduce an additional variable splitting
to deal with the indicator function term, the only modification to
ADMM iterations (5)–(7) being that the {ym} update becomes

y(j+1)
m = BTB Sλ/ρ

(
x(j+1)
m + u(j)

m

)
, (14)

i.e. shrinkage followed by projection onto the feasible set C. This
method will be referred to as boundary overlap suppression (BOS).

This approach allows for convolution in the DFT domain that
is equivalent to a spatial domain convolution that excludes any fil-
ter position that overlaps the signal boundary, circumventing wrap-
around artifacts from the circular convolution. However, while arti-
facts resulting from filters crossing the boundary are avoided, a dif-
ferent type of artifact may result from the pixels near the boundary
being represented by fewer spatial shifts of the dictionary filters than
the pixels in the interior of the image, so that the boundary regions
have at their disposal a reduced set of possible representations. This
approach is of interest, however, since it corresponds to the most
common boundary handling for standard patch-based sparse repre-
sentations. The usual boundary handling for convolutional sparse
representations computed in the spatial domain also has the poten-
tial for an inferior representation near the boundary for similar rea-
sons [11, Sec. 2.1],[6].

2The indicator function of a set S is defined as

ιS(X) =

{
0 if X ∈ S
∞ if X /∈ S

.

3.2. Boundary Masking

To avoid any boundary artifacts, it is necessary to allow the filter
kernels to overlap the boundary, but without wrap-around, equivalent
to allowing partial patches on the boundary region within a patch-
based scheme. This can be achieved by using coefficient maps {xm}
and signal s that have been spatially extended by zero-padding, and
solving

argmin
x

1

2

∥∥WDx− s
∥∥2
2
+ λ ‖x‖1 . (15)

where W is a spatial mask operator that zeros-out any regions of
its argument that extend beyond the original boundary, and D and
x are as defined in (3). Direct solution of this problem in the DFT
domain is not possible, however, since a spatial mask does not have
a compact representation in the DFT domain.

4. EFFICIENT MASKING ALGORITHMS

We consider two different approaches for efficient DFT domain so-
lution of a problem of the form of (15).

4.1. Additive Mask Simulation

The fundamental idea of the first approach is to introduce into the
representation an additive component that is constrained to be zero
within the part of the signal retained by the mask (so that it does not
perturb the retained part of the representation), and is unconstrained
and un-penalized within the masked-out region (so that it takes on
values that cancel any influence on the functional value from parts of
filters that protrude into the masked-out region) [10]. This additional
component can be introduced into the standard form of the problem
by adding an impulse filter to the dictionary; the corresponding co-
efficient map becomes the additional component, and it is just nec-
essary to exclude this map from the `1 norm and apply the additional
constraint that it is zero where the mask value is unity. This method
will be referred to as additive mask simulation (AMS).

Formally, given a dictionary withM filters {dm}m∈{0,1,...,M−1},
append impulse filter dM = δ to give an extended dictionary with
M + 1 filters. The mask is represented as a diagonal weighting
matrix, W , with entries that are zeros and ones. The problem can be
written as

argmin
{xm}

1

2

∥∥∥∥∥
M∑
m=0

dm ∗ xm−s

∥∥∥∥∥
2

2

+λ

M−1∑
m=0

‖xm‖1+ιC(xM ) , (16)

where ιC(·) is the indicator function of the set C = {x ∈ RN :
Wx = 0}. This problem has the same form as (13), and can be
solved by a minor variation on the algorithm for that problem.

4.2. Mask Decoupling

More recently, Heide et al. [9] have proposed applying the mask
decoupling technique (abbreviated as MD when convenient) of
Almeida and Figueiredo [12] to the masked CBPDN problem (15).
(In contrast to the AMS method described above, this method does
not require that the mask have binary (i.e. 0 or 1) entries.) Instead
of the usual splitting into ADMM standard form as in (4), this
technique employs the splitting

argmin
x,y0,y1

1

2

∥∥Wy1 − s
∥∥2
2
+λ ‖y0‖1

s.t.
(

x
Dx

)
−
(

y0

y1

)
= 0 .

(17)



Defining

A =

(
I
D

)
y =

(
y0

y1

)
u =

(
u0

u1

)
, (18)

the corresponding ADMM iterations are

x(j+1) = argmin
x

ρ

2

∥∥∥Ax− y(j) + u(j)
∥∥∥2
2

(19)

y(j+1) = argmin
y

1

2

∥∥Wy1 − s
∥∥2
2
+ λ ‖y0‖1 +

ρ

2

∥∥∥Ax(j+1) − y + u(j)
∥∥∥2
2

(20)

u(j+1) = u(j) +Ax(j+1) − y(j+1) . (21)

The functional minimised in (19) can be expanded as

ρ

2
‖Ax− y + u‖22 =

ρ

2

∥∥∥∥( x
Dx

)
−
(
y0

y1

)
+

(
u0

u1

)∥∥∥∥2
2

(22)

=
ρ

2
‖Dx− (y1 − u1)‖22 +

ρ

2
‖x− (y0 − u0)‖22 , (23)

which is of the same form as (5), and can be solved via the same
frequency domain method. The functional minimised in (20) can be
expanded as

1

2

∥∥Wy1 − s
∥∥2
2
+ λ ‖y0‖1 +

ρ

2
‖y1 − (Dx+ u1)‖22

+
ρ

2
‖y0 − (x+ u0)‖22 . (24)

Since the y0 and y1 components of y are decoupled, minimisation
with respect to y can be achieved by the independent minimisations

y
(j+1)
0 = argmin

y0

λ ‖y0‖1 +
ρ

2
‖y0 − (x+ u0)‖22 (25)

y
(j+1)
1 = argmin

y1

1

2

∥∥Wy1−s
∥∥2
2
+
ρ

2
‖y1−(Dx+ u1)‖22 . (26)

The solution to (25) is just soft thresholding, and the solution to (26)
is given by

(WTW + ρI)y1 =WT s+ ρ(Dx+ u1) . (27)

5. DICTIONARY LEARNING

Dictionary learning based on CBPDN can be expressed as

argmin
x,D

1

2
‖Dx− s‖22 + λ ‖x‖1 , (28)

where D and x are as defined in (3), and the problem is solved by
alternating between minimizing with respect to x and D. The min-
imization with respect to x can be achieved using any of the sparse
coding variants described in the preceding sections, and the mini-
mization with respect to D can also be solved via an ADMM algo-
rithm [8, Sec. V]). If the sparse coding variant supports masking,
so does the resulting dictionary learning algorithm. Some additional
care is required in these cases (e.g., when the sparse coding utilises
additive mask simulation, the dictionary update step should exclude
the impulse component of the dictionary), but the additional compli-
cations are implementational rather than conceptual.

A much more serious issue is the question of how the sparse cod-
ing and dictionary update stages are to be combined to to construct a
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Fig. 1. A comparison of functional value decay for standard CBPDN
and BOS, AMS, and MD variants, with λ = 0.01. Note that the
BOS method has a slightly larger minimum functional value than
the other three methods, which becomes apparent at a larger number
of iterations than plotted here.

dictionary learning algorithm. Heide et al. [9] follow the example of
Bristow et al. [6] in deriving the dictionary learning algorithm from
a single Augmented Lagrangian [5] functional (although with mul-
tiple consecutive steps of each sparse coding and dictionary update
stage instead of interleaving a single step of each stage). This deriva-
tion requires that sparse coding and dictionary update stages are in-
terleaved on their primary variables (e.g. variable x in the sparse
coding algorithm represents the coefficient maps in the dictionary
update stage). The approach advocated here, in contrast, follows
that proposed in [8, Sec. V.B] in which the sparse coding and dictio-
nary update stages are interleaved on their auxiliary variables (e.g.
variable y in the sparse coding algorithm represents the coefficient
maps in the dictionary update stage), in a way that is not derivable
from a single Augmented Lagrangian functional.

To avoid convoluted descriptions, the dictionary learning algo-
rithm of Heide et al. [9] will be referred to as primary variable al-
ternation with mask decoupling (PVA-MD), and the structure advo-
cated here will be referred to as auxiliary variable alternation (AVA),
with a postfix indicating a specific sparse coding variant (e.g. AVA-
Std for AVA with standard CBPDN, or AVA-AMS for AVA with
additive mask simulation) when appropriate.

6. RESULTS

We now compare the performance of the different boundary handling
methods in both sparse coding and dictionary learning problems.

6.1. Sparse Coding

The performance of the previously-discussed sparse coding variants
was compared in three different sets of experiments. For all three
sets the dictionary consisted of 108 filters of size 12×12, and the test
image was the 512 × 512 pixel “Lena” image after scaling of pixel
values to the range [0, 1] and highpass filtering, and a grid search
was performed to ensure a good choice of the penalty parameter ρ.

The first experiment compared the decay with number of itera-
tions and time of the functional value for the standard CPBDN and
BOS, AMS, and MD variants on an image without boundary exten-
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Fig. 2. A comparison on a set of 10 images of size 100× 100 pixels
of functional value decay for auxiliary variable alternation (AVA)
dictionary learning with no boundary handling (Std), and with the
BOS, AMS, and MD boundary handling methods, as well as with
primary variable alternation with mask decoupling (PVA-MD).

sion and a constant unit mask (i.e. no masked-out regions). As can
be seen in Fig. 1, the standard, BOS, and AMS methods have very
similar convergence, with the MD method slightly behind at first, but
rapidly approaching the behaviour of the other two methods.

The second experiment compared the decay with number of it-
erations and time of the functional value for the AMS and MD vari-
ants of CBPDN on the test image with a padding of 11 pixels on
the bottom and right boundaries and a mask with zero entries cor-
responding to the extended region, and the third experiment com-
pared the performance of the two mask implementation methods in
a random “inpainting” problem, with the mask corresponding to ran-
domly distributed corrupted pixels instead of a boundary region. The
results of these experiments (omitted due to space constraints) were
in agreement with those of the first in that the convergence of the
AMS method is slightly faster than that of the MD method, the dif-
ference shrinking with increasing iteration number.

6.2. Dictionary Learning

Both sets of dictionary learning experiments presented here com-
pare the AVA dictionary learning structure, with standard CBPDN
and the BOS, AMS, and MD variants used for the sparse coding
stage (using modified versions of Matlab implementations from the
SPORCO library [13]) with the PVA-MD dictionary learning algo-
rithm proposed by Heide et al. [9] (using their publicly available
Matlab implementation [14]).

The first set of dictionary learning experiments compared a num-
ber of different approaches in the dictionary learning test reported by
Heide et al. [9]: learning a dictionary of 100 filters of size 11 × 11,
with λ = 1, on 10 images, of size 100 × 100 pixels and with val-
ues in the range [0, 255], from the “fruits” dataset. The results were
generated using 100 iterations of the AVA algorithms, and 13 outer
iterations of the PVA-MD algorithm, which corresponds to 130 iter-
ations of the AVA methods since it uses 10 inner iterations per outer
iteration. It can be seen from Fig. 2 that (i) the standard CPBDN and
BOS variants of AVA are approximately twice as fast as the AMS
and MD variants (but note that the BOS variant has a slighly larger
minimum functional value than the other methods), and (ii) the AVA-
AMS and AVA-MD algorithms have very similar performance, and
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Fig. 3. A comparison on a set of 10 images of size 512×512 pixels
of functional value decay for auxiliary variable alternation (AVA)
dictionary learning with no boundary handling (Std), and with the
BOS, AMS, and MD boundary handling methods, as well as with
primary variable alternation with mask decoupling (PVA-MD).

have much faster convergence than the PVA-MD algorithm.
The second set of experiments was similar to the first, but with

the “fruits” data set replaced with a set of 10 greyscale images of
size 512 × 512 pixels cropped from a set of images with a Creative
Commons license on Flickr. The results were generated using 100
iterations of the AVA algorithms, and 3 outer iterations3 of the PVA-
MD algorithm, equivalent to 30 iterations of the other algorithms. It
can be seen from Fig. 3 that (i) PVA-MD has far slower convergence
than the other methods, which all have similar behaviour on the scale
of this graph, and (ii) for the larger training images, the standard
CPBDN and BOS AVA variants are not much faster than the AVA-
AMS and AVA-MD variants. It should also be noted that the PVA-
MD algorithm has far greater memory requirements than the other
approaches, presumably due to the strategy of caching Cholesky fac-
torizations of system matrices [9, Sec. 3]. For example, for this set
of experiments, the maximum memory usage of the AVA-MD dic-
tionary learning was 14GB, while that for PVA-MD was 73GB.

7. CONCLUSIONS

The BOS method has negligible additional computational cost over
standard CBPDN, but is not expected to be as effective as bound-
ary masking in addressing boundary artifacts4. The two different
boundary masking algorithms have very similar computational per-
formance, with a small advantage to the AMS method in all of the
sparse coding comparisons presented here, and no overall advantage
to the AVA forms of either method in the dictionary learning com-
parisons (AVA-AMS converges very slightly faster than AVA-MD
in Fig. 2, and vice versa in Fig. 3). For dictionary learning, a far
more significant issue is the way in which the sparse code and dic-
tionary updates are interleaved, the MD variant of the AVA structure
proposed in [8, Sec. V]) having much faster convergence and lower
memory requirements than the PVA-MD structure proposed in [9].

3It was not possible to coerce the code [14] to continue beyond three outer
iterations by any adjustment of the iteration limit and tolerance parameters.

4A comparison of the relative effectiveness of these methods in suppress-
ing boundary artifacts is beyond the scope of the present paper, which fo-
cusses on computational issue, and will be addressed in future work.
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